
V

L

i
!

i
!

Object-Oriented Productivity Metrics _ 2

John L. Connell, Sterling Software, Inc. /)_ 3_._. Nancy Eller, Sterling Software, inc. N 9 4 I fir
Software productivity metrics are useful for sizing and costing proposed software and for measuring
development productivity. Estimating and measuring source lines of code has proven to .be a bad idea
because it encourages writing more lines of code and using lower level languages. Functaon Point
Analysis, as espoused by Dreger [1], is an improved software metric system but it is not compatible
with newer rapid prototyping and object-oriented approaches to software development. A process is

presented here for counting object-oriented effort points, based on a preliminary object-oriented
analysis. It is proposed that this approach is compatible with object-oriented analysis, design,
programming, and rapid prototyping. Statistics gathered on actual projects are presented to validate the

approach.

Problems With Existing Productivity Metrics

The software engineering field has been searching for decades for a way to definitively size software.
The purpose of precise sizing of software is to provide a means for determining, exactly, the answers

to the following questions:

• How much will it cost to develop a proposed new software application?
• How well will the software fit within the target computer's available storage and memory?

• How are individual programmers performing in terms of units of software produced per

unit of project time elapsed?
• When will the work in progress be ready for use?

Good metrics would make new application cost/benefit analyses lead to correct decisions more

frequently. There would be less processing of expensive change.requests during system development
to reconfigure baseline hardware architectures as true software size becomes apparent. Total Quality
Management (TQM) programs could make use of better process improvement metrics. Project
management, with good metrics, would be more effective.

The most prevalently used metrics are heuristics based on experience; experienced software developers
are sometimes pretty good at guessing the answers to the four preceding questions. The second most
widely used metric is the Source Line of Code (SLOC); developers guess how many SLOCs will be in
the final product and then multiply the error of this estimate by errors in the estimate of how many lines
of code can be produced in one person hour. Less widely used is Function Point Analysis [1] -- a
measure of software size that is language independent and has a more precise definition than the
SLOC.

The argument can be made that estimates based on experience are not really metrics at all. A counter to
this is that most existing software productivity metrics are also fairly unscientific, but are disguise.A., to
appear scientific. In fact, there is little conclusive evidence that use of any of the current metrics wilt
produce any more accurate results than experience based estimates. Following are the specific
disadvantages of using SLOCs or FPA metrics for your next software development project.

Source Lines of Code (SLOC) Metrics Discourage Productivity

Software developers are paid to develop software applications, not to write lines of code. Suppose that
two developers are working on the same application in different organizations. One is using a third
generation language (3GL), such as FORTRAN, and another using a fourth generation language
(4GL), such as an SQL dialect. The 4GL developer will have fewer lines of code than the 3GL

developer (by one order of magnitude) for the same amount of functionality. This is documented by
many studies and is well presented in Dreger's Function Poin_ Analysis. [1].

b q

D3.2-1

W

Object-Oriented Productivity Metrics

M
This fact is complicated by several arguments. Some argue that 4GL code is not as efficient or robust
as 3GL. Others say that, although the 4GL programmer writes fewer lines of code, s/he is done
sooner, so the metrics work out satisfactorily. Finally, some advocate collecting SLOC metrics that are
language specific, thus compensating for differences. []

It is not necessary to argue over the goodness of 4GL versus 3(3L. Do you believe that third
generation languages were a significant productivity improvement over second generation languages
such as Assembler and Autocoder? Wasn't Assembler a big improvement over raw machine language? m
Isn't there a noticeable trend here in terms of number of lines of code needed to produce a given

amount of functionality? The history of programming environment development has always been to -_
create new languages that increase programmer productivity by mqu_ngfewer lines of code m i

produce a given amount of functionality. If you use a metrics system that rewards programmers based
on how many lines of code they write per hour, you will be implementing a bad incentive (rewarding

productivity degradation). U

While it is true that 4GL progranmaers will finish coding a given amount of functionality sooner than

their 3GL programmer counterparts, this does not mean that they will finish a similar development Z
project significantly faster. The reason this is true is that they will not write requirements and design i
specifications or test plans any faster. Suppose that coding is 20% of total development effort. Then,
suppose that a 4GL programmer can do the coding in 10% the time required "fora 3GL p rogrmr_, er.
This will result in a total 18% productivity improvement -- not very dramatac, un me omer nana, me i

4GL programmer will probably write 10% of the number of lines of code needed by. the 3GL
programmer. Therefore, a SLOC metrics system will show that a 4GL programmer ts very
unproductive, compared to a 3GL programmer-- unless the organization has been collecting 4GL
metrics previously and never attempts to compare productivity between environments. The bottom line m

is that, even if you collect 4GL metrics, there are always vendors out there developing new higher,
productivity languages and development systems. Consider how badly SLOC systems fail in visual -_
programming environments where icons, menu choices, and drawing tools take the place of text-based i

syntax.
i

Function Point Analysis (FPA): Improved, but Short of Ideal []

FPA requires estimating how many Inputs, Outputs, Queries, Files, and Interfaces a proposed system
will contain. An Input is basically a program that is mostly about capturing data. An Output is a _-_
program that mostly issues data. Queries are combinations since they require a fair amount of input and II

always produce output. Files are static data storage locations, including database tables. Interfaces are

external entities: other applications, users, and devices.

In his book, Dreger presents a scheme for identifying and classifying each of these elements as to their

complexity and assigning each element a number of Function Points depending on its complexity. He,
of course, recommends collecting your own data to use in converting Function Points to hours, but i

does give some examples so that you can see that a good starting place: if you have not been collecting
data, might be about 20 hours per Function Point in a typical 3GL envtronment. The beauty of this
approach is that it is language independent; you will develop the same number of Function Points
regardless of which language you choose, m

FPA rewards productivity realized from using more advanced development tools by producing --
statistics that show more Function Points being created in fewer hours. It is true you must still estimate •

how many Inputs, Outputs, Queries, Files, and Interfaces a proposed system will contain, and then

multiply the error of that estimate by the error in conversion to hours, but conventional structured
analysis and design (SA/SD) methodologies will pr_uce specifications from whichtbese estimates i

can be rather precisely extracted. For this reason, rrA estimates oaseo on tamy complete stmcmre_

specifications, have proven to be much more accurate than the average SLOC based estimate. z

D3.2-2 i

|

L .

L...-

w

!
- L....

Object-Oriented Productivity Metrics

Unfortunately, the very reason for the success of Function Point Analysis is also its major weakness.
Since structured specifications must be fairly complete before a meaningful estimate can be generated,
FPA does not work well when a rapid prototyping approach such as that recommended in Structured
Rapid Prototyping [2] is used. The rapid prototyper needs a reliable estimate in order to plan for when
prototype iteration must be complete, but does not want to completely pre-specify requirements before
they have been discovered through prototyping.

Also, it is not clear that FPA is compatible with modem Object-Oriented development techniques. In
the Object-Oriented paradigm, the concept of Program (Inputs, Outputs and Queries) is obsolete, as is
the concept of File. These archaic concepts are replaced with the new term Object. An Object
encapsulates both data (as Object attributes), and methods, or services (what the object does). The best
of the new Object-Oriented Analysis methodologies [3] do not provide a means of developing
specifications from which Function Points could be easily derived.

Introducing Object-Oriented Productivity Metrics (OOPM)

The following material presents something new-- Object--Oriented Productivity Metrics (OOPM).
This is an approach that, similar to FPA, is language independent, but is also very compatible with
Object-Oriented Analysis and rapid prototyping. The developer using OOPM will be counting
Object-Oriented Effort Points (OOEPs) instead of Function Points. An OOEP is intuitively
straightforward, it is a unit of measure used to determine how long it takes to develop an Object Class.

In order to determine how long it will take to develop a new Object Class, you will need to specify
how many attributes the Object will have, how many services or methods of various types it will
contain, what external entities it will get data from, and to what external entities it will deliver data.
Objects will be simple, average, or complex depending on how many attributes they have. A simple
Object might be defined as one with fewer than seven attributes. An average Object would perhaps
have seven to 14 attributes, and complex Objects would have greater than 14 attributes. This
classification is similar to and based on Dreger's system [1] for classifying the complexity of files,
except that files usually have significantly more fields than Objects have attributes [3].

Experience on actual projects shows that most of the time spent developing the data structure of an
Object Class is spent m requirements analysis and design. Actual development of data structure
instantiation scripts takes almost no time once the design details have been specified. This is why it is

important to classify Objects as to their data complexity. Then give simple Objects 300EPs, average
Objects 500EPs, and complex Objects 800EPs -- an assignment similar to FPA File classification.

Services, or methods, should be counted separately, as each one will contribute significantly to effort

required to implement an Object Class. Here you could classify Services into four categories,
consistent with both Dreger [1] and Coad/Yourdon [3]: Add/Modify/Delete Services, System Screen
(Menus, Helps) Services, Output Services, and Computationally Intensive Services. Some of these
categories would be further classified as simple, average, or complex, depending primarily on how
much data is processed. Add/Modify/Delete Services could get 3,4, or 6 points, and Output Services
4, 5, or 7 points. System Screen Services, such as menus and help screens, do not normally process
data, so they would always get the same number of points, say 4. One would classify services as
eomputationally intensive so that they will always get a high number of points, regardless of amounts
of data processed, say 8.

Finally, count the external entities the proposed application will have to interface with, similar to the
Interface count in FPA. Classify external entities as simple, average, or complex depending on how
many Object Classes the external will interface with. Give less than two Classes 7 points, two to five
Classes 10 points, and more than five Classes 15 points. Figure 1 summarizes the system for
classifying Object-Oriented Effort Points.

D3.2-3

Object
Class

Object-Oriented Productivity Metrics

Simple Average Complex

< 7 Attributes 7 - i4 Attributes > 14 Attributes

300EPs 500EPs 800EPs

I

I

m
m

[]

Service:

Add/Modify/
Delete

Output

Sys. Screen

Comp. Intense

External

Entity

300EPs 400EPs

400EPs 500EPs

400EPs N/A

N/A

< 2 Classes

700EPs

N_

2- 5 Classes

10 OOEPs

600EPs

700EPs

N/A

800EPs

> 5 Classes

15 OOEPs

Figure 1, Object-Oriented Effort Point Classification System

I

Using Object-Oriented Analysis to Count OOEPs

What the OOPM estimator will need to do at the start of a new software development project is to

prepare a preliminary requirements specification, using graphic models depicting the Object Classes,
Services, and External Entity Interfaces the new application will need. This can be very incomplete, for
a rapid prototyping project, and an expansion factor applied to the initial estimate to obtain a total
development effort estimate.

For rapid prototyping, OOPM will work better than an FPA approach based on SA/SD because there
will be a direct correlation between expansion of the OOA specification and expansion of the prototype

more Object Classes and Services will be added with each prototype iteration. With SA/SD,
expansion of a prototype resulted in more primitive processes to specify in the Struc.tured Analysis:
requiting re-partitioning and balancing of all higher levels in the Dataflow Diagram hierarchy. Thls ts
what is recommended in Structured Rapid Prototyping [2] -- possible, but somewhat awkward.

Figure 2 shows an example of an Object--Oriented information model diagram for a Harbor
Information System. This application will contain ten simple Object Classes for an OOEP count of 30.
It will contain 6 simple Add/Modify/Delete Services for 18 OOEPs, 4 simple Output Services for 16
points and, let's say, one menu and one help screen, for 8 more points. This gives a total of 72
OOEPs.

I

I

m

II

I

l

[]

I

=

I

=.__

Ill

|

|

m
ma

i

I

D3.2-4

=

=

7

1 L

Object-Oriented Productivity Metrics

Harbor

Number

Name

Address

Status

MonitorStatus

Slip

Number

Type
Status

MonthlyRent

RentPercent

r PatrolRound

v Timeln
r_

TimeOut

AssignGuard
J

.._RentalAgreement

onth

CalcRent

I I
_ailboat _Powerboat

umberofSails I LHorsepower I

q

I_Ow Ship

umber

ame
ner

_ OwnerPhone

OwnerAddress

As signSh_p

I I
fYacht "_ fDinghy

[,,NumberSleepsJ _umberSeatsJ

(-Guard "_

Number

Name

Address

Phone

ShoeSize

PayGuards

OrderShoes

Figure 2, Harbor Information System Object-Oriented Information Model

But, what about External Entity Interfaces? In Structured Rapid Prototyp_ ing, [2] two dataflow
diagrams, The Context Diagram and the Essential Functions Diagram, are recommended as part of the
preliminary rapid requirements analysis to help work out the external data interfaces. How to model
these interfaces seems to be missing from the Coad/Yourdon OOA approach. On the other hand, it
does not seem appropriate any longer to advocate that an Object--Oriented developer begin by drawing
Dataflow Diagrams. Instead, consider an Object Class Source/Sink Diagram as shown in Figure 3.

In Figure 3 there are 5 external entities. Harbor Manager and Employee are of average comp!exity and
get 10 points each. Acme Placement Agency Database, Ship Owner, and Payless Shoes are simple and
get 7 points each. The total External Interface OOEPs are 41. This brings the grand total for the Harbor
Information System to 113 OOEPs.

Hours per OOEP

In F_nc_ion PQint Analysis [1], Dreger states that the norm for hours required to code one Function
Point, in a third generation language, such as COBOL is about 20. Examples given of languages in
this range are Pascal, JOVIAL, FORTRAN, COBOL, ALGOL and C (C is identified as the least

D3.2-5

Object-Oriented Productivity Metrics

productive language in this list). Object-Oriented software development projects will not use one of
these languages; they will hopefully use an Object--Oriented Programming Language (OOPL) such as
Smalltalk or C++. Drcger says that such languages will require about one-fifth as many lines of code
per Function Point as a third generation language. Presumably this is due to language extensibility and
component reuse through inheritance. This puts an OOPL in almost the same category as a 4GL w
about 4 hours per Function Point.

Harbor Rental

t New

1
Manager

Patrol

Assignment

__IShip I BillContract

Guard

Candidate

i_[Ship

Owner

Shoe Order__I PaylesSshoesI

Profile

Acme

Placement

Agency
Database

Paycheck

Duty Roster

Employee

Harbor
Harbor Alarm

Status

m

i

roll

L
m

i

I

I

i

i
R

I

I

m
I

i

Figure 3, Harbor Information System Source/Sink Diagram

From this analysis, it can be determined that, using OOPM, a simple Add/Modify[Delete Service (data
entry screen) should take an average of about 12 hours of effort (300EPs times 4 hours per OOEP).
The conversion of 4 hours per OOEP can be applied to all 113 OOEPs for The Harbor Information
System, which then should take about 452 person hours to develop. This estimate should include
OOA, OOD, programming with an OOPL, test and all documentationl I(eep]n mind that _ _::_
documentation effort is one of those aspects of development that will vary widely according to various

organizations' documentation standards and that all such estimates will need to be adjusted to specific
project conditions, such as developer skills and experience.

U

I

m

m
I

m

i
m

m
I

D3.2-6
u

II

1 |

__. -

Object-Oriented Productivity Metrics

Benefits of Using Object-Oriented Productivity Metrics

The metrics presented here will be compatible with, and encourage the use of, very advanced
development environments such as those used in Object-Oriented Rapid Prototyping [4]. Developers
will be rewarded according to their proficiency in rapid development of new Objects (something of

more perceived value to application users than lines of code or Function Points). Software reuse, an
important modem productivity enhancing technique is fostered by Object-Oriented techniques; it will
be rewarded by Object-Oriented Productivity Metrics. OOPM will generate metrics that are tightly

coupled to Objects. When those Objects are reused, their OOEPs are encapsulated and will move with

the Objects to the new environment where they become available for processor sizing md other
purposes.

Whether or not rapid prototyping is used, OOPM provides a way to get reliable sizing and effort
estimates very early in the project-- before requirements have been finalized-- based on preliminary
Object--Oriented graphics models. When using a rapid prototyping approach, OOPM will provide an
estimate of how long it will take to develop the initial prototype and an expansion ratio can be used to
estimate how long it will take to develop the entire application. The same expansion ratio can also be
applied to estimate how many Objects will exist in the final application.

Research Evidence Supporting Feasibility of OOPM
,. =:

7 7

Dreger has been cited as a source of valuable software metric research [1] and Coad_ourdon OOA [3]

has been cited as a good approach to Object-Oriented requirements analysis. The basic philosophy of
FPA is that software metrics should be based on things the user wants to pay for, not lines of code.
The basic philosophy of OOA is that users are mostly interested in Objects within the domain of their
field of interest. It seems logical, therefore to merge these two philosophies to create Object-Oriented

Productivity Metrics.

Attempts at defining what a software Object is, to the universal satisfaction of all software engineers,
have mostly met with failure. Undaunted, we will propose one more definition: an Object is a thing of
interest to a software application user m defined, for the purposes of that application, by the attributes
of the Object that are of interest to the user.

The reason this working definition of an Object is useful is that it allows for comparisons that may tie
OOPM back to FPA for purposes of supporting feasibility. An Object has attributes; in terms of
Information Modeling methodology, so does an Entity. In implementation, an entity often becomes a
database table. Thus, Object attributes are very similar to database attributes which are, in turn, very
similar to fields in fdes (except that database tables are usually normalized and have fewer attributes
than files have fields). Therefore, FPA File counts can be converted to OOPM Object counts.

For FPA, SA/SD methodologies are used to provide precise counts of how many files will be created
for a new application. For OOPM, you can use OOA models to accurately determine how many
Objects of what level of complexity will be created. Determining Object complexity from preliminary
OOA models may, in fact, be easier than determining File complexity from preliminary Structured
Analysis. It is difficult, during the early stages of requirements analysis, to determine how many fields
will be in a proposed file. It is not so difficult, in the early stages of OOA, to determine how many
attributes a proposed Object will have.

One of the authors is the manager of several projects at NASA Ames Research Center that have been

collecting metrics on application development in an environment using Sybase development tools.
Sybase is a relational database management system with a bundled collection of development tools
including a 4GL, reportwriters, and a forms generator. On these projects, entities are defined and
modeled in a manner consistent with defining and modeling Objects in OOA (even though Sybase is
not Object--Oriented).

D3.2 7

Object-Oriented Productivity Metrics

The metrics kept are with respect to how long it takes to develop a Form and how long it takes to
develop a Report. Only development with Sybase tools is tracked; very little development work on
these projects uses third generation language programming. Four years of data have been averaged
with the result that it can be stated that the average Form takes 24 hours to develop and the average

Report 16 hours. There is a variance, depending on complexity, yielding a range of 4 to 40 (sometimes
more) hours per Screen and 4 to 24 hours per Report. These metrics do not include final system
documentation or full integration testing.

Some of the Screens are very complex. They include what has been described above as

Add/Modify/Delete Services, System Screen Services, and ComputationaUy Complex Services. The
Reports are equivalent to the Output Services described above. Data has not been kept on the amount
of requirements and design effort required to develop an Entity (Object).

The purpose of reporting these effort metrics here is that they fall well within an acceptable range of the
suggested values for OOPM given above. Suppose that the average input Service is worth 400EPs
and the average output Service 500EPs. Then suppose, using Sybase tools, an OOEP takes 4 hours
to develop (this would be consistent with statistics provided by Dreger [1]. Then, developing an input
Service would require an average of 16 hours and an output Service 20 hours, according to OOPM
metrics. These estimates are acceptably close to the actuals of 24 hours and 16 hours, respectively,

considering that Dreger says the average of 20 hours per COBOL Function Point has a range of 3 to
87 hours. To get really accurate metrics, you will have to collect your own statistics.

Summary of Findings
7 - 7 Z_2 7 _ _ " Z_Z_S_Z7 7Z7

With the advent of rapid prototyping; Object-Oriented Analysis (OOA), Design (OOD), and

programming (OOP); and, recendy, Object-Oriented Rapid Prototyping (OORP) -- it is time to
abandon software productivity metrics based on either Source Lines of Code (SLOCs) or Function
Point Analysis (FPA). Productivity metrics need to support and encourage the use of the best modern
softwa,e engineering practice if the desired result is continuous process improvement.

A new approach, Object-Oriented Productivity Metrics (OOPM) has been defined here that is
compatible with modern software development techniques such as Object-Oriented Rapid Prototyping.
Arguments made in and supported by Coad/Yourdon's Object-Oriented Analysis [3] and Dreger's
Function Point Analysis [1] provide proof of the soundness of the OOPM approach. Actual project

experience, using metrics similar to those that would be used with OOPM, provides evidence
indicating that OOPM based estimates would be highly accurate. Based on this research, the following
recommendations can be made without hesitation:

• Use OOA, OOD, and OORP techniques for software development.
• Estimate effort using OOPM.
• Evaluate productivity using OOPM.
• Collect your own OOPM statistics and continually refine them over time.

References

1. Coad, P. & Yourdon, E. Q_j¢ct-Oriented Analysis, New York: Yourdon Press (Prentice-Hall),
1990, 1991.

2. Connell, J. & Sharer, L., Structured Rapid Proto_ping. Englewood Cliffs, New Jersey: Yourdon

Press (Prentice-Hall), 1989.

3. J. Brian Dreger, Function Point Analys_ Prentice Hall, Englewood Cliffs, NJ, 1989.
4. Connell, J., Gursky, D. & Shafer, L., "Object-Oriented Rapid Prototyping," Embedded Systems

_L_I:1tII__i_, September, October, 1991.

7

g

m

m

g

u

= _

m

m
m

m
I

g

m

D

i

I

I

u

I

B

D3.2-8
!!1

